North Atlantic Spring Bloom: coupled physical-biological modelling and variational data assimilation

Witold Bagniewski^{1, 2}, Katja Fennel², Mary Jane Perry¹, Eric D'Asaro³, Nathan Briggs¹, Amanda Gray³, Craig Lee³, Eric Rehm³

¹University of Maine, ²Dalhousie University, ³University of Washington

CMOS Congress

Halifax, NS

1 June 2009

North Atlantic Spring Bloom

- Photosynthetic Carbon uptake
- Carbon removal (mixed layer pump, aggregate sinking)
- Carbon storage

2 Lagrangian floats

4 Seagliders

T, C O_2 Transmission ChI fluorescence Backscatter Ed and Lu PAR ISUS NO_3^-

T, C O₂ Chl fluorescence Backscatter CDOM fluorescence

GOTM 1-D physical - biological model

Data assimilation

The cost function – calculates the misfit between model data and observations:

Steps involved in the data assimilation procedure:

Data assimilation

Before data assimilation:

 μ_{max} Phy = 0.30 μ_{max} Dia = 0.5 g_{max} = 1.0 **Cost = 4.40**

After data assimilation:

 μ_{max} Phy = 0.29 μ_{max} Dia = 0.41 g_{max} = 1.58 **Cost = 2.87**

 \log_{10} ([Red Spikes] Low Pass filtered 20 points)

PON [mmol N/m³] at 60N, 20W (model) Chlorophyll [mg chl a/m³] at 60N, 20W (model) 4.5 -10 -10 -20 -20 3.5 Model data -30 -30 -3 -40 -40 Depth [m] Depth [m] 2.5 -50 -50 2.5 2 -60 -60 1.5 -70 -70 1 -80 -80 0.5 -90 -90 0.5 -100 -100 03/30 05/25 5 03/30 04/13 04/20 04/27 05/04 05/11 05/18 05/25 5 04/27 05/04 05/11 05/18 04/06 04/06 04/13 04/20 Date Date x 10 x 10

4.5

4

3.5

3

2

1.5

1

Estimating carbon removal

Summary:

• The use of autonomous platforms in the North Atlantic allowed us to follow the evolution of phytoplankton patches

• We developed an ecosystem model and assimilated data from the platforms to improve the model performance

- The model-based estimate of carbon production during the Spring Bloom is ~ 1.8 Mol-C/m²

• The estimated carbon removal is ~ 1.5 Mol-C/m²

Thank you

Biological model

Sources and sinks of the state variables:

$$\begin{split} \frac{\partial Phy}{\partial t} &= \mu_{Phy} Phy - gZoo - m_{Phy} Phy - w_{Phy} \frac{\partial Phy}{\partial z} \\ \frac{\partial Dia}{\partial t} &= \mu_{Dia} Dia - m_{Dia} Dia - w_{Dia} \frac{\partial Dia}{\partial z} \\ \frac{\partial Zoo}{\partial t} &= \beta gZoo - \varepsilon_1 Zoo - \varepsilon_2 Zoo^2 \\ \frac{\partial Det_N}{\partial t} &= (1 - \beta)gZoo + m_{Phy} Phy + m_{Dia} Dia + \varepsilon_2 Zoo^2 - r_N Det_N - w_{Det} \frac{\partial Det_N}{\partial z} \\ \frac{\partial Det_{Si}}{\partial t} &= \frac{Si}{N} m_{Dia} Dia - r_{Si} Det_{Si} - w_{Det} \frac{\partial Det_{Si}}{\partial z} \\ \frac{\partial DIN}{\partial t} &= r_N Det_N + \varepsilon_1 Zoo - \mu_{Phy} Phy - \mu_{Dia} Dia \\ \frac{\partial Si}{\partial t} &= r_{Si} Det_{Si} - \frac{Si}{N} \mu_{Dia} Dia \\ \frac{\partial Chl_1}{\partial t} &= \rho_{Chl_1} \mu_{Phy} Phy - gZoo \frac{Chl_1}{Phy} - m_{Phy} Chl_1 - w_{Phy} \frac{\partial Chl_1}{\partial z} \\ \frac{\partial Chl_2}{\partial t} &= \rho_{Chl_2} \mu_{Dia} Dia - m_{Dia} Chl_2 - w_{Dia} \frac{\partial Chl_2}{\partial z} \\ \frac{\partial Oxy}{\partial t} &= r_{Oxy;DIN} (\mu_{Phy} Phy + \mu_{Dia} Dia - r_N Det_N - \varepsilon_1 Zoo) \end{split}$$

O2 exchange (surface only):

$$\begin{aligned} \frac{\partial Oxy}{\partial t} &= -K(Oxy - O_{sat}(1 + \Delta))\\ K &= \left(\frac{2}{9}U_{10}^2 + \frac{1}{3}U_{10}\right) \left(\frac{S_C}{600}\right)^{-0.5}\\ \Delta &= 0.01 \left(\frac{U_{10}}{U_{1ox}}\right)^2 \end{aligned}$$

Light equations:

$$f(I) = \frac{\alpha I}{\sqrt{(\mu^{max})^2 + \alpha^2 I^2}}$$
$$I = I_0 \phi e^{-zK_w - \int_0^z K_{Chl}(Chl_1(\eta) + Chl_2(\eta))d\eta}$$

Parameters:

\mathbf{symbol}	value	unit	description
μ_{Phy}^{max}	0.3	d^{-1}	maximum small phytoplankton growth rate
μ_{Dia}^{max}	0.38	d^{-1}	maximum diatom growth rate
m_{Phy}	0.1	d^{-1}	small phytoplankton mortality rate
m_{Dia}	0.12	d^{-1}	diatom mortality rate
k_N	0.7	$mmolNm^{-3}$	half-saturation concentration of DIN uptake
k_{Si}	0.71	$mmolSim^{-3}$	half-saturation concentration of silicic acid uptake
α_{Phy}	0.017	$\frac{mmolN}{mgChldW/m^2}$	initial slope of P-I curve (small phytoplankton)
α_{Dia}	0.028	$\frac{mmolN}{mgChldW/m^2}$	initial slope of P-I curve (diatoms)
θ_{max}	3.84	$\frac{mgChl}{mqN}$	phytoplankton maximum Chl:N
$\frac{Si}{N}$	1.0	molSi:molN	stoichiometry of diatoms
g_{max}	0.95	d^{-1}	maximum grazing rate
λ	1.0	$\left(\frac{mmolN}{m^3}\right)^2$	zooplankton grazing half-saturation
β	0.75	-	assimilation efficiency of zooplankton
ε_1	0.067	d^{-1}	zooplankton excretion rate
ε_2	0.25	$(mmolNm^{-3})^{-1}$	zooplankton mortality rate
r_N	0.1	d^{-1}	detrital nitrogen remineralization rate
r_{Si}	0.05	d^{-1}	detrital silicate remineralization rate
w_{Phy}	-0.1	md^{-1}	sinking rate of small phytoplankton
w_{Dia}	-0.8, -55.0	md^{-1}	sinking rates of diatoms
w_{Det}	-5.0	md^{-1}	sinking rate of detritus
I_0		Wm^{-2}	incoming light just below the ocean surface
ϕ	0.43	-	fraction of light that is photosynthetically active
K_w	0.04	m^{-1}	light attenuation coefficient for water
K_{Chl}	0.016	$(mgChl)^{-1}m^{-1}$	light attenuation coefficient for chlorophyll

Parametrizations:

$$\rho_{Chl_1} = \frac{\theta_{max}\mu_{Phy}Phy}{\alpha IChl_1}$$

$$\rho_{Chl_2} = \frac{\theta_{max}\mu_{Dia}Dia}{\alpha IChl_2}$$

$$\mu_{Phy} = 1.066^T \mu_{Phy}^{max} f(I) \frac{DIN}{k_N + DIN}$$

$$\mu_{Dia} = 1.066^T \mu_{Dia}^{max} f(I)min\left(\frac{Si}{k_{Si} + Si}, \frac{DIN}{k_N + DIN}\right)$$

$$g = g_{max}\lambda Phy(1 - e^{-\lambda Phy})Zoo$$